
Portales‑Casamar et al. Epigenetics & Chromatin  (2016) 9:25 
DOI 10.1186/s13072-016-0074-4

RESEARCH

DNA methylation signature of human 
fetal alcohol spectrum disorder
Elodie Portales‑Casamar1†, Alexandre A. Lussier2†, Meaghan J. Jones2, Julia L. MacIsaac2, Rachel D. Edgar2, 
Sarah M. Mah2, Amina Barhdadi3, Sylvie Provost3, Louis‑Philippe Lemieux‑Perreault3, Max S. Cynader4, 
Albert E. Chudley5,6, Marie‑Pierre Dubé3,7, James N. Reynolds8, Paul Pavlidis1 and Michael S. Kobor2,9*

Abstract 

Background:  Prenatal alcohol exposure is the leading preventable cause of behavioral and cognitive deficits, which 
may affect between 2 and 5 % of children in North America. While the underlying mechanisms of alcohol’s effects on 
development remain relatively unknown, emerging evidence implicates epigenetic mechanisms in mediating the 
range of symptoms observed in children with fetal alcohol spectrum disorder (FASD). Thus, we investigated the effects 
of prenatal alcohol exposure on genome-wide DNA methylation in the NeuroDevNet FASD cohort, the largest cohort 
of human FASD samples to date.

Methods:  Genome-wide DNA methylation patterns of buccal epithelial cells (BECs) were analyzed using the Illumina 
HumanMethylation450 array in a Canadian cohort of 206 children (110 FASD and 96 controls). Genotyping was per‑
formed in parallel using the Infinium HumanOmni2.5-Quad v1.0 BeadChip.

Results:  After correcting for the effects of genetic background, we found 658 significantly differentially methylated 
sites between FASD cases and controls, with 41 displaying differences in percent methylation change >5 %. Further‑
more, 101 differentially methylated regions containing two or more CpGs were also identified, overlapping with 95 
different genes. The majority of differentially methylated genes were highly expressed at the level of mRNA in brain 
samples from the Allen Brain Atlas, and independent DNA methylation data from cortical brain samples showed high 
correlations with BEC DNA methylation patterns. Finally, overrepresentation analysis of genes with up-methylated 
CpGs revealed a significant enrichment for neurodevelopmental processes and diseases, such as anxiety, epilepsy, 
and autism spectrum disorders.

Conclusions:  These findings suggested that prenatal alcohol exposure is associated with distinct DNA methylation 
patterns in children and adolescents, raising the possibility of an epigenetic biomarker of FASD.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The prenatal environment has the potential to perma-
nently imprint physiological and behavioral systems dur-
ing development, leading to both short- and long-term 
health consequences. In particular, prenatal alcohol 
exposure (PAE) can alter the development, function, and 

regulation of numerous neural and physiological systems, 
resulting in a variety of deficits falling under the umbrella 
of fetal alcohol spectrum disorder (FASD) [1]. Over the 
lifetime, the effects of PAE are manifested through cog-
nitive and behavioral deficits, persistent alterations to 
stress responsivity and immune function, and increased 
vulnerability to mental health disorders and other 
comorbidities in individuals with FASD [1–4]. However, 
the degree to which alcohol exposure causes alterations 
during development varies, depending on factors such 
as timing and level of exposure, overall maternal health 
and nutrition, and genetic background [5]. As such, only 
a small proportion of affected children present with the 
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phenotype of fetal alcohol syndrome (FAS), which is dis-
tinguished by growth deficits and facial dysmorphisms 
in addition to central nervous system dysfunction [6, 7]. 
Nevertheless, the vast majority of children with FASD 
display physiological and neurobehavioral impairments 
lasting into adulthood, suggesting persistent program-
ming effects of PAE across the spectrum of FASD [8].

While the etiology of the FASD currently remains 
unclear, epigenetics is emerging as an attractive can-
didate for the biological embedding of prenatal and 
early-life experiences in general and thus is a promis-
ing avenue for the study of FASD [9]. Epigenetics refers 
to modifications of DNA and its packaging that alter 
the accessibility of DNA to potentially regulate gene 
expression and cellular function without changes to 
the underlying genomic sequences [10]. The most stud-
ied epigenetic modification in human populations is 
DNA methylation, which refers to the covalent attach-
ment of a methyl group to the 5′ position of cytosine, 
typically occurring in the context of cytosine–guanine 
dinucleotide (CpG) sites [11]. CpG sites are relatively 
rare in the human genome, yet do not occur at ran-
dom; regions containing higher than expected levels 
of these dinucleotides have been termed “CpG islands” 
(CGIs) [12]. The 2-kb regions flanking CGIs are known 
as CGI “shores,” while the areas located beyond shores 
are known as “shelves” [13–15]. Of note, these regions 
are typically more variable than CGIs themselves, as 
they have a greater range of DNA methylation across 
individuals [14]. DNA methylation is associated with 
the regulation of gene expression, although its effects 
on transcription are highly dependent on genomic con-
text. For example, when located within gene promoters, 
DNA methylation generally represses gene expres-
sion, but this relationship is less well defined for CpGs 
located within gene bodies and intergenic regions [16]. 
Furthermore, DNA methylation is closely associated 
with several key developmental processes, including 
genomic imprinting, tissue specification and differ-
entiation [17, 18]. DNA methylation patterns are also 
population specific, as many CpG sites are associated 
with ethnicity [19–21]. There are a number of possible 
reasons for this association, including shared environ-
ments or associations of epigenetic marks with specific 
genetic variants [22–24].

Importantly, DNA methylation is malleable in response 
to environmental factors, and these changes may be 
inherited through cell divisions, potentially persisting 
throughout the lifetime [25–27]. For example, prena-
tal exposure to cigarette smoke is associated with long-
term changes in DNA methylation of the AHRR gene, 
and maternal undernutrition during pregnancy leads to 
altered DNA methylation of IGF2 [28, 29]. Several studies 

have also characterized epigenetic changes following pre-
natal and postnatal ethanol exposure [30–36]. Early work 
in pregnant mice demonstrated that acute ethanol expo-
sure during mid-gestation (gestational days 9–11) causes 
global genomic loss of DNA methylation in the fetus [37]. 
However, recent studies of embryonic cultures exposed 
to ethanol show that rather than a global demethylation 
of the genome by ethanol, some regions become more 
methylated and others less methylated [38]. Moreover, 
genome-wide studies in adult mice that were exposed 
to ethanol prenatally have also identified widespread 
changes in DNA methylation patterns in the entire brain, 
further suggesting an important role for epigenetics in 
the etiology of FASD [39]. Finally, a recent study charac-
terized the DNA methylation profile in buccal epithelial 
cells (BECs) from a small cohort of human FASD sam-
ples, identifying alterations in the epigenome of children 
with FASD, particularly within the protocadherin gene 
clusters [40].

Collectively, these findings support epigenetic mecha-
nisms as potential contributors to the deficits observed 
following PAE. However, no large-scale investigations of 
DNA methylation in individuals with FASD have been 
performed to date. In order to ascertain the effect of PAE 
on the human epigenome, the present study investigated 
the DNA methylation patterns of BECs from 110 children 
with FASD and 96 age- and sex-matched controls, to our 
knowledge representing the largest investigation on PAE 
effects on the human epigenome. Statistically significant 
alterations between FASD cases and controls were suc-
cessfully identified following ethnic background correc-
tion, with a number of differentially methylated sites and 
regions located in genes previously associated with alco-
hol exposure [38, 40]. Taken together, these results sup-
port a potential role for DNA methylation in the etiology 
of the neurobiological deficits observed in children with 
FASD and represent a potential epigenetic signature of 
FASD.

Results
The NeuroDevNet FASD epigenetics cohort
Participants in the NeuroDevNet Canadian FASD study 
cohort were recruited from six clinical sites across Can-
ada (Vancouver, BC; Edmonton, AB; Cold Lake, AB; 
Winnipeg, MB; Ottawa, ON; and Kingston, ON) [39]. 
More specifically, 110 children with FASD or confirmed 
PAE and 96 typically developing controls were matched 
for sex and age, ranging from 5 to 18  years of age, for 
the analysis of genome-wide DNA methylation patterns 
(Table  1). We note that self-declared ethnicity differed 
considerably between the FASD and control partici-
pants, necessitating stringent statistical corrections, as 
described below.
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Children with FASD displayed altered DNA methylation 
patterns
The DNA methylation profiles of BECs from the com-
plete NeuroDevNet cohort were assessed using the Illu-
mina HumanMethylation450 array, which assays DNA 
methylation at 485,512 sites across the human genome. 
Following quality control and normalization to remove 
probes with bad detection p-values and low bead counts, 
or those associated with sex chromosomes, SNPs, and 
polymorphic CpGs, 404,430 sites remained in the final 
dataset of 206 samples [42]. Although BECs typically 
represent a relatively homogenous population of cells, 
they can occasionally be contaminated by white blood 
cells during collection, thus possibly affecting the results 
of differential DNA methylation analyses [43]. To assess 
whether BEC from the present study had high levels of 
contamination, principal component analysis of BECs 
and blood samples obtained from GEO (GSE42861) was 
performed. This analysis did not reveal any blood con-
tamination in our dataset, as evidenced by the distant 
clustering of samples from both tissue types (Additional 
file  1: Figure S1). Having thus established that cellular 
heterogeneity was unlikely to confound our results, we 
next set out to identify alterations in DNA methylation 
patterns specific to the FASD group. For this, differential 
DNA methylation analysis using a two-group design was 
coupled with surrogate variable analysis (SVA), which 
corrects for batch effects and any other undesirable varia-
tion in the data. This analysis identified 1661 differentially 
methylated (DM) CpG sites between the FASD group and 
controls at a false discovery rate (FDR)  <  0.05, indicat-
ing substantial differences in DNA methylation patterns 
between the two groups. However, self-declared ethnicity 
in the cohort was strongly confounded with FASD status 
(Table 1). Given that ethnicity has been associated with 
altered DNA methylation levels, these differences could 
potentially drive alterations in DNA methylation at these 
1661 DM CpG sites [19–21].

Ethnic background correction identified FASD‑specific DNA 
methylation patterns
To account for ethnicity on a genetic basis, the Illumina 
HumanOmni2.5 array was used to obtain genotypes 
at nearly 2.4 million single nucleotide polymorphisms 
(SNPs) for each child. Participants were clustered by 
multi-dimensional scaling (MDS) of genotypic data along 
with publicly accessible data from the HapMap project 
[44]. Linear regression of the first four genetic clusters 
from this analysis with the SVs revealed little correlation 
with the majority of DNA methylation variation, suggest-
ing that further correction for differences in ethnicity was 
required to isolate the effects of PAE beyond ethnicity 
(Additional file 1: Figure S2). As such, individuals cluster-
ing within the larger and more genetically homogeneous 
subgroup were selected for further analysis, consisting 
of 49 FASD cases and 87 controls (Table  2; Additional 
file 1: Figure S3; Additional file 3: Table S2). Differential 
DNA methylation analysis was performed on the more 
genetically homogeneous subsample to isolate the effects 
of PAE in the absence of an ethnic confound. In support 
of less ethnicity-related effects in this subsample, SVA 
identified fewer SVs compared to the full dataset. Fur-
thermore, the results from DNA methylation analysis in 
this subgroup displayed only a moderate correlation with 
those obtained from the full sample (Spearman rank cor-
relation: 0.43), suggesting that ethnicity indeed may have 
influenced differential DNA methylation patterns in the 
full cohort, despite our efforts to use SVA to remove the 
effects of ethnicity. Therefore, the subsample was used to 
filter out ethnically confounded CpG loci to obtain a sub-
set of DM sites unbiased for ethnicity (Fig. 1). More spe-
cifically, the top 5242 probes (unadjusted p-value <0.01) 
in the genetically homogeneous subsample were selected 
as a conservative set of differentially methylated CpG 
sites between FASD cases and controls that were unaf-
fected by ethnic background. This set was compared to 
the 1661 DM sites identified in the full sample, and only 

Table 1  Characteristics of the NeuroDevNet FASD cohort

a  Percentages in brackets include participants with mixed ethnicity including 
Caucasian

FASD cases Controls

N 110 96

Age 11.55 ± 3.37 11.28 ± 3.38

Sex

 Male (%) 41 47

 Female (%) 59 53

Self-declared ethnicity

 Caucasian 27 % (48 %)a 91 % (96 %)

 Other 73 % (52 %) 9 % (4 %)

Table 2  Characteristics of  the more genetically homog-
enous subsample

a  Percentages in brackets include participants with mixed ethnicity including 
Caucasian

FASD cases Controls

N 49 87

Age 11.29 ± 3.16 11.29 ± 3.37

Sex

 Male (%) 43 41

 Female (%) 57 59

Self-declared ethnicity

 Caucasian 51 % (76 %)a 93 % (97 %)

 Other 49 % (24 %) 7 % (3 %)
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the probes present in both lists were considered specific 
effects of FASD, unlikely to be related to effects of eth-
nicity. Following this strategy, a final list of 658 DM CpG 
sites significantly altered in FASD cases was obtained at 
an FDR < 0.05 (Additional file 2: Table S1), composed of 
356 down-methylated and 302 up-methylated sites com-
pared to controls (Fig. 2a, b). To determine whether this 
corrective analysis removed some or all effects of ethnic-
ity, differential DNA methylation analysis was performed 
on FASD cases from the two main ethnic clusters from 
MDS to tease apart ethnicity and FASD-specific effects 
between the groups (Additional file  1: Supplemental 
methods). As expected, the ethnicity-corrected CpGs 
were less associated with ethnic differences in DNA 
methylation patterns than the uncorrected set of CpGs, 
as evidenced by the decreased area under the ROC curve 
(Additional file  1: Figure S4). Furthermore, reflecting 

the economic realities of our study populations, socio-
economic status (SES) scores were slightly confounded 
between groups (p =  0.00017; Additional file  1: Figure 
S5), with the FASD group displaying lower overall scores 
than controls. However, the more ethnically homogene-
ous subgroup showed less skewing toward low SES in 
the FASD group (p = 0.16; Additional file 1: Figure S5), 
suggesting that the effects of SES might also have been 
partially accounted for during the correction for ethnic 
biases between groups. As such, the ethnicity-corrected 
set of 658 CpG loci associated with FASD was used in all 
subsequent analyses. The changes observed in the abso-
lute methylation levels of these DM CpGs were relatively 
small, consistent with previous human studies of neuro-
logical and neurodevelopmental disorders, with percent 
methylation changes ranging from 0.16 to 13.1  % after 
correction for surrogate variables (SVs) [45]. However, 

Fig. 1  Flowchart of bioinformatic analyses. Two analyses were performed in parallel to assess differential DNA methylation between FASD cases 
and controls. The first analysis, using 206 samples (110 FASD and 96 controls), identified 1661 differentially methylated (DM) sites and 3005 dif‑
ferentially methylated regions (DMR). The second, using a more genetically homogenous subgroup composed of 49 FASD cases and 87 controls, 
identified 5242 DM sites and 289 DMRs. These were used to filter out the sites identified in the first analysis that might have been confounded by 
differences in ethnic proportions between the two groups, resulting in a final list of 658 DM CpGs and 101 DMRs free of the confounding effects of 
ethnicity
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41 DM sites passed an arbitrary threshold for possible 
biological relevance of >5 % difference in DNA methyla-
tion levels between groups. Taken together, these results 

support the hypothesis that FASD is associated with 
altered DNA methylation patterns, largely free of identi-
fied confounding effects due to ethnicity and SES.  

Fig. 2  Visualization and verification of differentially methylated probes. a Volcano plot showing mean methylation differences between FASD 
and control (x axis) versus log transformed p-values (y axis). 1661 CpG sites with an FDR <0.05 were considered significantly differently methylated 
between FASD and control, but 1003 of these were ethnically confounded, resulting in the final 658 probes shown in blue. b Heatmap of top 50 
most significant up- (top) and down-methylated (bottom) probes in control (left, gray) versus FASD cases (right, blue). The percent methylation values 
(ranging from 0 to 1) are adjusted for the covariates from the regression model and then centered, scaled, and trimmed, resulting in a standardized 
DNA methylation level ranging from −2 to +2 (black–white scale). The mean percent methylation value (beta) for each probe (red–blue scale) is the 
mean methylation value, after adjustment for covariates, for all samples. c Verification with pyrosequencing in both FASD (blue) and control (gray) 
samples. The top panel displays DNA methylation levels measured by the 450K array, the bottom panel, the levels for the same CpG sites measured 
with pyrosequencing. These CpGs were located in the gene body of SHANK3 (cg10793758), NOS1AP (cg02858267), CACNA1A (cg24800175), and 
SNED1 (cg19075225), or in the 3′ UTR of NOS1AP (cg12486795). Those found in NOS1AP were located in a CpG island, while those in SHANK3 and 
CACNA1A were located in a north shelf or shore, respectively. The CpG associated with SNED1 was not located near any CpG island
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Technical verification of FASD DM loci by bisulfite 
pyrosequencing
To ensure that the results from the differential DNA 
methylation analysis were not dependent on the method 
used to measure them, five CpG sites with a difference in 
percent methylation change >5 % in the vicinity of genes 
with potential biological relevance were selected for 
verification using bisulfite pyrosequencing on the same 
samples. Pyrosequencing results confirmed the DNA 
methylation levels observed on the 450K array, showing 
similar DNA methylation levels and differences between 
groups for CpGs located in SHANK3, NOS1AP, CAC-
NA1A, and SNED1 (Fig. 2c). Pearson correlations ranged 
from 0.421 to 0.801 and Bland–Altman plots showed lit-
tle difference when comparing both methods, suggesting 
a strong concordance between DNA methylation data 
from microarray and the different pyrosequencing meth-
ods (Additional file  1: Figure S6). Perhaps more impor-
tantly, linear regression analysis of pyrosequencing data 
confirmed differential DNA methylation between FASD 
cases and controls in this subset of biologically relevant 
sites, even in the absence of covariates, as the p-values 
ranged from 3.7E−04 to 5.5E−03. Collectively, pyrose-
quencing data verified the findings from the 450K array, 
suggesting that individuals with FASD had altered DNA 
methylation patterns compared to typically developing 
children.

Overlap of BEC FASD signatures with brain tissue gene 
expression and DNA methylation
As alterations to DNA methylation patterns in children 
with FASD were identified in BECs, it is important to 
note that changes in peripheral tissues do not necessarily 
reflect alterations in a relevant tissue, such as the brain, 
even though these two tissues originate from the same 
germ layer and thus might share some epigenetic con-
cordance [46]. Therefore, two complimentary approaches 
were used to obtain an approximation for the relationship 
of these FASD-associated DM loci to brain biology and 
possible the etiology of FASD. First, DM genes were com-
pared to publically available gene expression data from 
896 postmortem brain regions (Allen Institute for Brain 
Science) to determine whether they were expressed at 
biologically relevant levels in neural tissue [47]. This anal-
ysis revealed that 56  % of DM genes identified in BECs 
displayed mRNA expression levels in the brain above 
the median expression for all genes, with 68 % ranked in 
the top 2/3 of the genes based on mean ranking across 
~900 brain regions [48]. These findings held true whether 
all DM genes or only the down-/up-methylated genes 
were considered for analysis. Next, the FASD BEC DNA 
methylation patterns were compared to DNA methyla-
tion patterns from unrelated postmortem cortical brain 

specimens previously published by our group [48]. The 
overall correlation of mean DNA methylation between 
BEC and brain samples for all 658 DM CpGs was 0.76 
(Additional file  1: Figure S7). Taken together, these 
results indicated that BEC may be a suitable surrogate 
tissue for brain cells and that the DM loci presented here 
could potentially report on biological alterations in neu-
ral tissues.

FASD DM loci were enriched in regions of high DNA 
methylation variability
Given that genomic location plays an important role in 
sculpting DNA methylation landscapes and mediat-
ing its effects, we ascertained the relative enrichment of 
FASD DM loci in distinct genomic features. Overall, DM 
probes had a significantly different distribution than the 
proportions present on the entire 450K array (Fig.  3a; 
down-methylated probes: χ2 =  33.63, p =  2.8E−06; up-
methylated probes: χ2 = 13.30, p = 2.1E−02). Compared 
to all 450K probes, both down- and up-methylated CpGs 
in FASD cases were significantly underrepresented in 
CpG island cores, which generally show the least amount 
of variability in DNA methylation levels (down-methyl-
ated p = 1.62E−6; up-methylated p = 7.53E−4). By con-
trast, down-methylated sites were enriched in CpG island 
shores and shelves (p = 0.04; p = 0.0003), which tend to 
be more variable than CpG island cores [14]. Up-meth-
ylated sites were overrepresented in non-CpG island 
regions (p =  0.009), further supporting a greater effect 
of PAE on malleable regions of the epigenome. Moreo-
ver, the distribution of average methylation levels for DM 
sites was significantly different than that of all 404,030 
sites (Student’s t test; p = 2.5E−09; Additional file 1: Fig-
ure S8). Further analysis of this phenomenon revealed a 
significant enrichment for DM CpG sites in the interme-
diate 20–80 % range of methylation levels, while showing 
a concordant underrepresentation in the hypo-methyl-
ated (<20  %) and hyper-methylated (>80  %) categories 
(Fig.  3b) [49]. These findings suggested that DM loci in 
the FASD cases versus controls were mostly located in 
more variable regions of the epigenome.

Multiple DM sites were associated with imprinted genes 
and the protocadherin gene cluster
Next, the association of DM loci with different genes 
was assessed, with particular regards to whether some of 
these harbored more than one CpG differentially methyl-
ated between FASD and controls. Using genome location 
annotations from UCSC, the DM sites were mapped to 
403 different genes. Of these, 190 were down-methylated, 
208 were up-methylated, and five displayed inconsistent 
differences between FASD cases and controls, contain-
ing both up- and down-methylated sites, which were 
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likely due to different genomic locations within the genes 
(Additional file 3: Table S2). The Phenocarta resource for 
gene–disease associations has previously curated a list 
of susceptibility genes for FASD, identifying 123 poten-
tial candidates from both human and animal studies of 
PAE [50]. However, DNA methylation analysis of the 115 
FASD candidate genes assayed on the 450K array did 
not reveal significant alterations in FASD cases. None-
theless, twelve genes contained three or more DM loci, 
including several genes previously involved in studies 
of alcohol exposure and dependence, but not present in 
the Phenocarta list, such as SLC6A3 and DRD4 (Table 3) 
[51–54]. This short list of DM genes also showed a slight 
but statistically significant enrichment for imprinted 
genes. The geneimprint Web site (www.geneimprint.
com) currently lists 96 human genes as imprinted, 80 of 
which were assayed on the 450K array. Of these, five were 
differentially methylated in FASD cases versus controls 
(ATP10A, CPA4, H19, KCNQ1OT1, SLC22A18), with 12 
out of 15 DM CpGs showing lower methylation levels in 
the FASD group, which resulted in a strong enrichment 
for imprinted probes in the list of differentially methyl-
ated probes (Fisher’s exact test; p = 1.8E−04). In particu-
lar, the six CpGs located within the SLC22A18 promoter 
were clustered together, showing a similar pattern 
between FASD cases and controls, suggesting a robust 
regional effect of PAE on this gene’s DNA methylation 
profile (Fig. 4). Furthermore, 15 of the 658 DM sites were 
located within protocadherin genes, including six in the 

PCDHB cluster, six in the PCDHGA cluster, two in the 
PCDHA cluster, and one in PCDH9. Given the presence 
of multiple DM CpGs within these genes, these results 
provide support for imprinted genes and protocadherin 

Fig. 3  Differentially methylated probes are located in regions of variable and intermediate DNA methylation. a The 658 probes differentially 
methylated between FASD and control were underrepresented in CGI cores (down-methylated p = 1.62E−6; up-methylated p = 7.53E−4), while 
down-methylated probes were overrepresented in CGI shores/shelves (p = 0.04; p = 0.0003) and up-methylated probes were overrepresented in 
non-CpG island regions (p = 0.009). b The same probes’ average methylation levels are overrepresented in the mid-range categories (**p < 0.01, 
***p < 0.0001)

Table 3  Genes containing three or more differentially 
methylated probes

a  Previous reports describe change in opposite direction

Gene # of probes Direction 
of change

Previous reports 
(PMID)

PCDHB gene 
cluster

6 Up –

PCDHGA gene 
cluster

6 Up –

SLC22A18 6 Down 20009564

H19 5 Down 21382472
19519716
19279321
20009564
23580197

HLA-DPB1 5 Up –

DES 4 Down –

FAM59B 
(GAREML)

4 Down –

SLC38A2 4 Down –

CAPN10 3 Up –

DRD4 3 Down 20009564a

RASSF4 3 Inconsistent –

SLC6A3 3 Up 18504048

http://www.geneimprint.com
http://www.geneimprint.com
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clusters as strong candidates for the effects of PAE on the 
epigenome.

Association of FASD DM loci with neurodevelopmental 
processes and disorders
In order to identify broad biological processes associ-
ated with altered DNA methylation patterns in FASD 
children, gene function enrichment analysis was per-
formed on the dataset. As no significant results were 
obtained from the entire list of DM genes following 
multiple-test correction, the analysis was performed 
separately on both the up- and down-methylated gene 
lists. Given that the up-methylated gene list included 
several members of the protocadherin beta (PCDHB) 
and gamma A (PCDHGA) clusters, which are not dif-
ferentiated by gene function annotations, a single gene 
from each cluster was conserved for the analysis to avoid 
any redundancy that may skew the results. As such, only 
199 up-methylated genes and 190 down-methylated 
genes were analyzed for functional annotations using the 
overrepresentation analysis (ORA) tool in ErmineJ [55]. 
While no significant results were obtained using the 
gene ontology (GO) annotation with the list of down-
methylated genes, the up-methylated gene list showed 
enrichment for genes associated with neurodevelopmen-
tal processes (Table 4), such as neuron parts (20 genes; 

FDR = 0.051) and projections (19 genes; FDR = 0.082) 
[50, 56]. Furthermore, using the Phenocarta annotation 
for associations with diseases, the list of up-methyl-
ated genes was enriched for several neurodevelopmen-
tal disorders (Table  5), including “epilepsy syndrome” 
(15 genes; FDR =  0.081), “autistic disorder” (12 genes; 
FDR  =  0.092), and “anxiety disorder” (eight genes; 
FDR = 0.071) [50, 56]. Of note, the up-methylated genes 
were also marginally enriched for genes associated with 
substance-related disorder (15 genes; FDR  =  0.192). 
To further examine the regulatory circuitry associ-
ated with FASD DM genes, a co-expression analysis of 
the up-methylated genes across 282 human expres-
sion microarray experiments, spanning multiple tissues 
and experimental conditions, was performed using the 
Gemma web tools [57]. Of the up-methylated genes, 86 
could be included in the co-expression network (Fig. 5). 
The most strongly co-expressed pair was caldesmon 1 
(CALD1)-Palladin (PALLD), which are both cytoskele-
ton-associated proteins [58]. In addition, a small cluster 
of the network showed co-expression of several genes 
(NRXN1, CACNA1A, CDH10, and others) associated 
with autism and/or epilepsy. Taken together, these find-
ings suggest that altered DNA methylation patterns may 
potentially relate to the neurobiological deficits of chil-
dren with FASD.

Fig. 4  Several CpGs associated with SLC22A18 displayed down-methylation in FASD cases. The covariate-adjusted DNA methylation levels for 
control (gray) and FASD (blue) samples are shown for SLC22A18AS (top), with the gene structure aligned (bottom). Exons are represented by blocks, 
and transcriptional direction is indicated by arrows. All CpG sites are noted, those present on the 450K array are black while CpGs not present are 
gray. The six significantly differentially methylated probes located in the SLC22A18 promoter region are indicated with the horizontal black bar [FDR-
adjusted p-value (q) <0.05]
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Differentially methylated regions were identified 
between the FASD group and controls
To complement the site-specific analysis of differen-
tial DNA methylation, which identified several genes 
with multiple DM CpGs, we next attempted to iden-
tify broader patterns of differential DNA methylation 
using an unbiased approach. Specifically, the identifi-
cation of region-specific clusters of DM CpGs between 
children with FASD and controls was performed using 
DMRcate, an established method that uses a Gaussian 
kernel smoother to identify regions of differential DNA 
methylation [59]. In the full dataset, 3005 differentially 
methylated regions (DMRs) containing two or more 
CpGs were identified at an FDR <0.05, while in the more 
homogeneous subset of samples, 289 statistically signifi-
cant DMRs were identified between groups. Using the 
same approach to correct for the confounding effects of 
ethnicity as described in the site-specific analysis, 101 
DMRs unbiased by ethnicity were uncovered between 
individuals with FASD and controls (Additional file  4: 
Table S3). On average, these spanned 471 nucleotides, 
with lower and upper limits of 31 and 2450 bp, respec-
tively. DMRs each contained between 2 and 20 CpGs 
assayed on the 450K array, for a total of 504 unique 
sites, 75 of which were also identified in the first differ-
ential methylation analysis. Of these, 74 overlapped with 

95 different genes, and 27 were located in intergenic 
regions. Of those associated with genes, 25 overlapped 
with promoter regions (within 1500 bp of the transcrip-
tional start site), 23 with the 5′ UTR, 16 with the first 
exon, 49 with the gene body, and six with the 3′ UTR, 
as annotated from the hg19 genome assembly. Moreover, 
15 of the top DMRs associated with one or more genes 
overlapped with those containing multiple DM CpGs in 
the previous analysis, including SLC22A18, SLC38A2, 
HLA-DBP1, and NOS1AP (Table  6; Fig.  6a, b). These 
showed the same direction of change across the entire 
DMR, consistent with the individual CpG differential 
methylation analysis and verification by pyrosequenc-
ing, in the case of NOS1AP. Moreover, two DMRs were 
identified within the protocadherin genes, with eight 
CpGs spanning the PCDHGA and PCDHGB clusters and 
four CpGs spanning the promoter of PCDH12, further 
supporting a potential role for the protocadherin genes 
in FASD. Importantly, in addition to the genes overlap-
ping with the previous DM analysis, several additional 
DM genes were identified through this analysis, includ-
ing UCN3 and ITGAL, key components of the stress 
and immune response, respectively (Fig.  6c, d). Taken 
together, these results suggested that the effects of PAE 
on the DNA methylation went beyond single CpG loci to 
affect broader chromosomal neighborhoods. 

Table 4  Gene ontology function enrichment in genes up-methylated in FASD

GO name GO ID  p-value FDR Genes

Neuron part GO:0097458 1.38E−05 0.051 ATP2B2, CDH13, GABRB1, HEPACAM, KCNAB2, KCND3, KCTD16, NFASC, NMU, NRSN1, NRXN1, 
P2RX7, PAM, ROBO3, SHANK1, SHANK3, SLC6A1, SLC6A3, SLC8A1, TIAM2, UCN3

Vocalization behavior GO:0071625 1.18E−05 0.066 NRXN1, SHANK1, SHANK3

Neuron projection GO:0043005 7.31E−06 0.082 CDH13, GABRB1, HEPACAM, KCNAB2, KCND3, NFASC, NMU, NRSN1, NRXN1, P2RX7, PAM, 
ROBO3, SHANK1, SHANK3, SLC6A1, SLC6A3, SLC8A1, TIAM2, UCN3

Table 5  Disease association enrichment in genes up-methylated in FASD

Disease name Disease ID  p-value FDR Genes

Anxiety disorder DOID_2030 1.44E−04 0.071 CRHR2, CYP3A4, GRM8, NOS1AP, P2RX7, PAM, SHANK1, SLC6A3

Pervasive developmental disorder DOID_0060040 1.15E−04 0.076 AGAP1, ARID1B, ATP2B2, ATP10A, CDH10, DCUN1D1, DPP6, ESRRB, GABRB1, 
GRM8, HEPACAM, NOS1AP, NRXN1, PCDHAC2, ROBO3, SDK1, SHANK1, 
SHANK3, SLC6A3, ST8SIA2

Epilepsy syndrome DOID_1826 2.07E−04 0.081 BRD2, CACNA1A, CCR3, CIT, GJD2, GRM1, GRM8, KCNAB2, NRXN1, NTNG2, 
P2RX7, PAM, SLC6A1, SLC6A3, SLC8A1

Autistic disorder DOID_12849 4.70E−05 0.092 AGAP1, ATP10A, CDH10, GABRB1, GRM8, HEPACAM, NOS1AP, NRXN1, ROBO3, 
SHANK1, SHANK3, ST8SIA2

Autism spectrum disorder DOID_0060041 1.01E−04 0.099 AGAP1, ARID1B, ATP2B2, ATP10A, CDH10, DCUN1D1, DPP6, ESRRB, GABRB1, 
GRM8, HEPACAM, NOS1AP, NRXN1, PCDHAC2, ROBO3, SDK1, SHANK1, 
SHANK3, SLC6A3, ST8SIA2

Substance-related disorder DOID_303 6.85E−04 0.192 ADARB2, ANPEP, CACNA1A, CDH13, CRHR2, FRMD4A, GRM8, KCND3, KISS1R, 
NMU, NRXN1, SLC6A1, SLC6A3, TIAM2, TRPM4
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Discussion
This study aimed to assess the effects of PAE on genome-
wide DNA methylation patterns and identify an epige-
netic signature of FASD, using a large cohort of human 
subjects. Significant changes to the DNA methylation 
profiles in BECs of children with FASD compared to 
age- and sex-matched typically developing controls were 
identified, with 658 CpGs displaying significantly altered 
DNA methylation levels, of which 41 had a >5 % meth-
ylation change. Moreover, 101 DMRs containing two or 
more sequential DM CpGs were identified throughout 
the genome, spanning 95 different genes, overlapping 
with several from the initial differential methylation 
analysis at single CpG level. The majority of DM genes 
were highly expressed in postmortem brain samples from 
the Allen Brain Institute. Moreover, BEC and independ-
ent cortical samples showed relatively high concordance 
of DNA methylation levels. As discussed in more detail 
below, several lines of evidence converge to support the 
validity of our data. First, a number of DM sites and 
regions were identified within genes and pathways previ-
ously associated with PAE. Second, novel DM sites and 

regions tended to be involved in pathways implicated 
in functional deficits of FASD. Third, broader patterns 
related to altered neurodevelopmental disorders were 
identified in sets and networks of genes associated with 
FASD in our study.

Differential DNA methylation analysis in our case–
control study comparing children with FASD to children 
with typical development replicated several associations 
from previous studies of PAE. One of the most strik-
ing similarities is the altered DNA methylation patterns 
observed in imprinted genes. Several studies have dem-
onstrated the effect of PAE on the H19 imprinted gene 
in both mice and humans [31, 60, 61]. A genome-wide 
DNA methylation study in mouse embryos exposed to 
ethanol also identified significant changes within several 
imprinted genes including both H19 and SLC22A18 [38]. 
Results from our study further confirmed these find-
ings, as five down-methylated probes in H19 and six in 
SLC22A18 were altered in the FASD cohort, with the 
latter being identified as a broader DMR as well. Given 
that imprinting plays a key role in the regulation of nor-
mal growth and development, its alteration by alcohol 

Fig. 5  FASD up-methylated genes co-expression network. Nodes represent the up-methylated genes, while edges represent their co-expression 
link. Nodes colored in orange, green, and cyan are genes associated with autism spectrum disorder, epilepsy, and anxiety, respectively. The edge 
width represents the number of experiments in which the co-expression link was identified. The green edges show positive correlations, while the 
red edges are negative correlations.
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exposure could be a factor in the neurodevelopmental 
defects observed in children with FASD [62]. Further-
more, the only other study of genome-wide DNA meth-
ylation patterns in individuals with FASD also identified 
several DM protocadherin genes within the alpha, beta, 

and gamma clusters, though only one CpG overlapped 
with the results presented here [40]. The differences in 
specific CpGs within these gene clusters between the two 
studies might be due to the much larger sample size of 
our study, as well as our use of multiple-test correction to 

Table 6  Top 30 gene-annotated differentially methylated regions associated with FASD

a  Max fold changes (FC) represented in percent methylation change (beta) in DNA methylation levels of FASD compared to control

Gene symbol(s) DMR location Chr Start position End position # of probes Min FDR Mean FDR Max beta FCa

HLA-DPB1 Body 6 33047056 33049505 17 2.59E−50 1.61E−06 0.087

SLC22A18, SLC22A18AS Body, TSS1500, TSS200, 5′ 
UTR

11 2919689 2921176 20 1.21E−29 1.46E−05 −0.049

PPP1R2P1 Body 6 32846924 32847845 18 1.81E−20 9.39E−10 0.026

SLC38A2 TSS1500 12 46767132 46768016 8 1.98E−16 9.78E−09 −0.039

HKR1 TSS1500, TSS200, 1st exon, 
5′ UTR

19 37825307 37825679 7 7.51E−16 9.51E−16 0.022

WDR52 5′ UTR, 1st exon, TSS200, 
TSS1500

3 113160071 113160821 10 1.34E−14 6.02E−13 −0.037

C3orf24 5′ UTR, 1st exon, TSS200, 
TSS1500

3 10149466 10150487 11 4.41E−13 1.88E−11 0.034

NOS1AP Body, 3′ UTR 1 162336877 162337375 5 4.69E−13 8.79E−13 0.039

KCNAB2 5′ UTR 1 6093770 6094993 6 9.78E−13 2.86E−07 0.026

F7 TSS1500, TSS200, Body 13 113759771 113760286 6 1.55E−10 1.96E−10 0.029

IFT140, TMEM204 Body 16 1598866 1599150 4 1.81E−10 4.34E−10 −0.036

RGL3 Body 19 11517079 11517436 4 3.06E−10 5.34E−10 0.036

STRA6 5′ UTR, 1st exon, TSS200, 
TSS1500

15 74494781 74496040 12 4.80E−10 1.06E−04 0.035

TXNRD1, EID3 5′ UTR, Body, TSS1500, 
TSS200, 1st exon

12 104697193 104697983 11 5.49E−10 3.98E−08 0.024

RNMTL1 Body, 3′ UTR 17 695156 695661 3 5.77E−10 3.23E−09 −0.026

C22orf42 Body, TSS200 22 32554848 32555310 5 7.95E−10 7.91E−09 0.022

RADIL Body 7 4869981 4870162 3 2.40E−09 2.48E−09 0.026

ITGAL Body 16 30485383 30485966 6 7.18E−09 5.13E−08 0.022

ZNF710 5′ UTR 15 90547692 90548043 3 4.18E−08 5.44E−07 −0.023

PCDHA7, PCDHAC2, 
PCDHA12, PCDHA6, 
PCDHA10, PCDHA4, 
PCDHA11, PCDHA8, 
PCDHA1, PCDHA2, 
PCDHA9, PCDHA13, 
PCDHA5, PCDHAC1, 
PCDHA3

Body, TSS1500 5 140344290 140344745 4 4.73E−08 1.20E−07 0.019

MAL2 TSS200, 1st exon, body 8 120220410 120221797 8 1.26E−07 2.35E−03 −0.022

UCN3 TSS1500, TSS200, 1st exon, 
5′ UTR

10 5406543 5407020 8 1.32E−07 3.03E−07 0.016

HKDC1 TSS1500, 5′ UTR, 1st exon 10 70979777 70980067 4 1.37E−07 1.40E−07 0.023

ARHGEF19 Body 1 16533422 16534579 8 1.88E−07 1.11E−04 −0.035

LOC154822 Body 7 158815555 158816392 3 2.36E−07 1.90E−05 −0.043

NDST4 1st exon, 5′ UTR, TSS200, 
TSS1500

4 116034871 116035232 4 5.96E−07 6.45E−07 0.031

SNED1 Body 2 242009513 242009588 2 6.41E−07 6.48E−07 0.040

PRKDC Body 8 48739161 48739256 2 7.94E−07 8.04E−07 −0.045

CASZ1 5′ UTR 1 10847541 10847594 2 2.92E−06 2.92E−06 0.025

HEATR2 Body 7 807596 809109 9 3.11E−06 3.69E−04 0.036
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mitigate spurious patterns of differential DNA methyla-
tion associated with the FASD group. However, we note 
that the single CpG site from our study that overlapped 
with the previous findings (cg21117330) was located in 
PCDHGA8 and displayed the same direction of change 
between FASD cases and controls and thus might repre-
sent a robust and reproducible effect of PAE.

In addition to genes previously identified in studies of 
PAE, DNA methylation changes were also uncovered in 
a number of additional genes with functional relevance 
to the deficits observed in FASD. More specifically, 
analysis of DM probes and regions identified altered 
DNA methylation patterns within genes related to the 
immune response, such as HLA-DPB1, a HLA class II 

histocompatibility antigen, and ITGAL (or CD11A), the 
integrin alpha L chain. Given that children with FASD 
often present with numerous deficits in immune func-
tion, epigenetic alterations of these genes might reflect 
functionally relevant underlying biology [63]. A DMR 
between FASD cases and controls was also identified in 
UCN3, an antagonist of the CRF type 2 receptor, which 
plays a key role in the stress response. As this gene acts 
downstream of stress signaling pathways, this alteration 
might be linked to altered basal levels of corticosterone 
found in individuals with FASD [1, 64]. Finally, two mem-
bers of the dopaminergic system, SLC6A3 and DRD4, 
each contained three differentially methylated CpGs in 
FASD cases compared to controls. Both of these genes 

Fig. 6  Differentially methylated regions associated with FASD. Percent methylation values adjusted for covariates were plotted across four statisti‑
cally significant differentially methylated regions (DMRs) between FASD (blue) and controls (gray) identified by DMRcate. a The HLA-DPB1 DMR 
spanned 2449 bp of the gene body (red bar) and contained 17 CpGs from the 450K array. b The NOS1AP DMR contained five CpGs over 498 bp and 
was located within the body and 3′ UTR (green bar) of the gene. c The 477 bp UCN3 DMR contained eight CpGs. One was located within the 5′ UTR 
(dark green dot) and 1st exon (light blue dot), while the remainder were located upstream of the gene’s transcriptional start site (TSS), one CpG falling 
within 1500 bp (black dot) of TSS and six located within 200 bp of the TSS (blue bar). d The ITGAL gene contained six unique DMRs over 583 bp of the 
gene body (red bar) 
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have also been proposed as modifiers and/or risk factors 
in alcohol abuse disorders and attention deficit disorder, 
and thus might potentially play a role in the deficits of 
attention and executive function in children with FASD 
[53, 54].

Moving beyond alterations in specific genes related to 
PAE, broader associations to neurodevelopmental pro-
cesses and disorders were identified in genes containing 
differentially methylated CpGs. In particular, the gene 
co-expression network contained a small sub-network 
of genes associated with autism and/or epilepsy, and up-
methylated genes in FASD cases were enriched for func-
tions related to neurodevelopmental disorders. These 
results could reflect the pleiotropy of these genes, or per-
haps their involvement in developmental functions dys-
regulated in neurodevelopmental disorders with partially 
overlapping phenotypes. As many of these genes were 
also functionally enriched for neuron parts and projec-
tions, they could influence processes necessary for typical 
brain development and partially underlie some deficits 
observed in children with FASD and other neurodevelop-
mental disorders.

Comparing epigenetic patterns associated with FASD 
and autism presented an interesting conundrum. While 
we identified a small sub-network of genes associated 
with autism and/or epilepsy in our analysis of the FASD-
related gene co-expression network, this relationship did 
not extend to the level of individual CpGs. Comparing 
the 14 DM genes from BECs recently reported to be asso-
ciated with autism spectrum disorder, we did not find any 
overlap with the DM loci identified in our study of FASD 
children [46]. The differences between the gene lists may 
reflect the different origins and phenotypes between the 
conditions, or that the effects of PAE are more easily 
identifiable in peripheral tissue than those of autism, or 
simply false positives and/or false negatives. Regardless, 
these results imply that at the single CpG level, genes 
showing differences in DNA methylation between FASD 
cases and controls are reflective of FASD-specific altera-
tions, rather than broad neurodevelopmental functions.

Although it is tempting to speculate that our collective 
results may be partially related to the functional deficits 
observed in FASD, it is important to consider that the 
DNA methylation patterns were derived from BECs. We 
feel that this concern is partially mitigated by our find-
ing of the majority of DM genes in BECs being consist-
ently expressed in the brain and by the DNA methylation 
patterns in neural tissue displaying high correlation with 
those in BEC. Moreover, it has been noted by others that 
BECs might be a good surrogate tissue for human DNA 
methylation studies, as both buccal and brain cells are 
derived from the ectoderm [65]. Lastly, while our study 
did not measure DNA methylation in additional tissues, 

evidence from animal models is emerging to support 
lasting alterations to both epigenetic and gene expression 
patterns in neural tissue following PAE [39, 66–68]. Nev-
ertheless, our results must be interpreted with caution in 
the context of neurodevelopment, as additional studies in 
postmortem samples from humans are required to rigor-
ously assess the concordance of epigenetic changes asso-
ciated with FASD between peripheral and central tissues.

A further challenge in the interpretation of altera-
tions to DNA methylation patterns in FASD cases versus 
controls lies in the small effect sizes of environmental 
exposures on the epigenome. Although the small DNA 
methylation changes observed here are consistent with 
genome-wide DNA methylation studies in other neu-
rodevelopmental and psychiatric disorders, it is unclear 
whether such small changes can have a strong effect on 
cellular functions [45, 46, 69]. However, slight changes 
accumulating in several genes involved in similar pro-
cesses could combine to have strong effects on biologi-
cal processes. For instance, as many of the up-methylated 
genes were co-expressed, small alterations to multiple 
members of this network could potentially affect the bio-
logical functions they regulate.

While our data are very consistent with published work 
in human epigenome-wide association studies, it is of 
course possible that the relatively small changes to DNA 
methylation levels reflect biological biases or even tech-
nical noise [69]. These could originate from a variety of 
sources, which we attempted to address to the best of our 
abilities. For example, although differences in cell-type 
composition can play an important role in driving DNA 
methylation variation, no contamination of the BEC 
from the present study with white blood cells was iden-
tified, suggesting that differences in cell-type composi-
tion likely did not affect the observed alterations to DNA 
methylation patterns in the FASD group. In addition to 
differences in cell types, differing postnatal environments 
between groups might also influence the observed DNA 
methylation patterns, skewing the results to represent 
possibly confounding variables other than PAE, such 
as diet, SES, and postnatal alcohol exposure. However, 
the majority of children in the FASD group were living 
in foster or adoptive homes, rather than the biological 
family, which hopefully would reduce differences in the 
rates of alcohol use or food security between groups. By 
contrast, SES scores were slightly confounded between 
groups, although this effect was partially mitigated by 
the focus on the more ethnically homogeneous subgroup, 
which showed less skewing toward low SES in the FASD 
cases. Finally, we feel that potential technical issues were 
reduced through the use of strict quality control and sta-
tistical procedures to eliminate unwanted variation in the 
data. As such, the technical validity of our approach was 
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supported by the verification of five DM loci by bisulfite 
pyrosequencing, the gold standard for targeted DNA 
methylation analysis.

We note that although most biological and technical 
issues were addressed by our study design and methods, 
a particular caveat in the identification of DM loci was 
manifested by the imbalance in ethnicity across FASD 
cases and control groups. Other studies have included 
ethnicity as a covariate during linear modeling to cor-
rect for its effects, but no significant DM probes were 
identified using this approach in our study, as FASD sta-
tus was confounded with ethnic background (Additional 
file  1: Supplemental methods). Given that self-reports 
do not always accurately assess ethnicity, SNP genotyp-
ing data were used to objectively assign participants to 
different ethnic groups, based on HapMap samples of 
known ethnicity. This analysis resulted in the identifica-
tion of a more homogeneous subgroup of samples, which 
was used as a comparative control to filter out the influ-
ences of ethnicity and related effects, such as SES and 
cultural confounders, on differential DNA methylation 
within FASD cases. In turn, this strategy facilitated the 
removal of ethnically biased probes from the original DM 
loci, resulting in the successful identification DM CpG 
sites specific to children with FASD and not confounded 
for ethnicity. Given the prevalence of ethnically diverse 
populations in large-scale studies of DNA methylation, 
this unique approach driven by genetic stratification of 
subgroups might prove a useful way of dealing with the 
effects of ethnicity in case–control studies beyond the 
one presented here.

Summary and conclusions
Despite the recognition of FAS over 40  years ago, PAE 
remains a leading cause of developmental disability in 
the developed world. While several animal studies have 
investigated the role of epigenetic mechanisms in the 
context of PAE, most human studies have been limited 
to alcohol consumption and dependence in adults, or 
a small cohort of children with FASD [40, 52, 70, 71]. 
As such, this study is the single largest investigation of 
genome-wide DNA methylation patterns in children 
with FASD. While one of the greatest challenges with 
this large cohort was the ethnicity imbalance between the 
FASD and control groups, ethnic background correction 
reduced this confound and allowed the reliable identifica-
tion of 658 DM CpG sites specific to children with FASD. 
Although the effect size of changes was small in some 
cases, 41 sites displayed a >5 % change in DNA methyla-
tion, which is consistent with previous studies and may 
reflect the subtle effects of PAE on the epigenome. We 
also identified 101 DMRs containing two or more DM 
CpGs, located within 95 different genes and spanning 

promoter regions, gene bodies, and both 3′ and 5′ UTRs. 
While these data were collected from BEC, rather than 
neural tissue, the vast majority of DM genes were highly 
expressed in the brain, suggesting a potential concord-
ance between peripheral and central tissues. These alter-
ations occurred in several genes previously implicated 
with PAE and altered neurodevelopment, and displayed 
functional enrichments for neural process and neurode-
velopmental disorders. Although it will be essential to 
validate these changes in separate cohorts from a differ-
ent population, these findings provide initial insight into 
the molecular mechanisms underlying the effects of PAE 
on children and present a potential role for role for DNA 
methylation in the etiology of FASD.

Methods
Participants and samples
Ethics for this project were reviewed and approved by 
the “Children’s and Women’s Research Ethics Board—
Clinical” (H10-01149). Children with FASD and age- 
and sex-matched typically developing children were 
recruited from multiple FASD diagnostic clinics across 
Canada, where saliva samples and BECs were collected 
for genotyping and DNA methylation analysis, respec-
tively [41]. All experimental procedures were reviewed 
and approved by the Health Research Ethics Boards at 
Queen’s University, University of Alberta, Children’s 
Hospital of Eastern Ontario, University of Manitoba, and 
the University of British Columbia. Written informed 
consent was obtained from a parent or legal guardian, 
and assent was obtained from each child before study 
participation. The majority of clinics used previously 
described guidelines for the diagnosis of FASD [72]. 
Briefly, samples were collected from 112 FASD and 102 
age- and sex-matched control children aged between 5 
and 18 (Table 1). Saliva samples were collected using the 
Oragene DNA kit (DNA Genotek Inc., Ontario, Can-
ada) according to the manufacturer’s instructions. BECs 
were collected using the Isohelix buccal swabs and Dri-
Capsule (Cell Projects Ltd., Kent, UK). To collect buccal 
cells, the swab was inserted into the participants’ mouth 
and rubbed firmly against the inside of the left cheek for 
1 min. The swab was then placed into a sterile tube with a 
Dri-Capsule and the tube sealed. An identical procedure 
was followed for the right cheek. Participants did not 
have any dental work performed 48 h prior to collection, 
and no food was consumed <60 min prior to collection to 
avoid contamination.

DNA methylation 450K assay
DNA was extracted from buccal swabs using the Isohelix 
DNA isolation kit (Cell Projects, Kent, UK). Seven hun-
dred and fifty nanograms of genomic DNA was subjected 
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to bisulfite conversion using the Zymo EZ DNA Methyla-
tion Kit (Zymo Research, Irvine, CA, USA), which con-
verts DNA methylation information into sequence base 
differences by deaminating unmethylated cytosines to 
uracil while leaving methylated cytosines unchanged. 
One hundred and sixty nanograms of converted DNA 
was applied to the HumanMethylation450 BeadChip 
array from Illumina (450K array), which enables the 
simultaneous quantitative measurements of 485,512 CpG 
sites across the human genome, following the manufac-
turer’s instructions. Chips were scanned on an Illumina 
HiScan, with the 214 samples run in two batches and 
each containing an equal number of FASD and control 
samples, randomly distributed across the chips. Two 
pairs of technical replicates were included and showed 
a Pearson correlation coefficient r > 0.996 in both cases, 
highlighting the technology’s reproducibility.

DNA methylation data quality control and normalization
The raw DNA methylation data were subjected to a set 
of rigorous quality controls, first of the samples and 
then of the probes. Of the 214 initial samples, eight were 
removed from the final dataset due to various qual-
ity and concordance issues. Of these, five were removed 
based on poor quality data, which was identified through 
skewed internal controls and/or ≥5  % of probes with a 
detection p-value >0.05. One sample was removed due to 
a gross chromosomal abnormality identified in the geno-
typing and DNA methylation data. The genotypes of the 
samples, based on the 65 SNP probes contained on the 
450K array, were compared to the genotypes from the 
SNP arrays. The genotypes were highly correlated for all 
samples (Pearson correlation coefficient r  >  0.9), except 
one, which was excluded from further analyses. Finally, 
as a pair of monozygotic twins was present in the control 
group, only one of their samples was chosen at random 
and retained in the analysis to remove any genetic bias. 
Next, probes were removed from the dataset according 
to the following criteria: (1) probes on X and Y chromo-
somes (N = 11,648); (2) SNP probes (N = 65); (3) probes 
with beadcount <3 in 5  % of samples (N  =  3029); (4) 
probes with 1 % of samples with a detection p-value >0.05 
(N = 10,163); or (5) probes with a polymorphic CpG and 
nonspecific probes as defined by the Price annotation 
(N  =  20,869 SNP-CpG and 41,937 nonspecific probes; 
[42]). A final filtering step was performed to set the meth-
ylation values to NA for any remaining probe–sample 
pair where beadcount <3 or detection p-value >0.05. Data 
normalization was performed using the beta-mixture 
quantile normalization method on the final dataset, com-
posed of 206 samples (110 FASD and 96 controls) and 
404,030 probes [73]. All analyses were performed using 
M values, which represent the log 2 ratio of methylated/

unmethylated, where negative values indicate <50  % 
methylation and positive values indicate more than 50 % 
methylation [74]. Percent methylation changes (beta-
values) were used in graphical representations of the data 
and indicate the percentage of methylation calculated by 
methylated/(methylated +  unmethylated), ranging from 
0 (fully unmethylated) to 1 (fully methylated).

Differential methylation analysis
Given that DNA methylation changes are typically small 
and that unknown sources of variation, including cel-
lular heterogeneity, may influence the data, SVA was 
performed to identify SVs representative of unwanted 
heterogeneity using the SVA package in R [75]. Using 
DNA methylation data from all 206 samples, SVA iden-
tified 15 SVs not associated with clinical status (FASD 
vs control), which, as expected, were only partially cor-
related with known covariates (Additional file 1: Supple-
mental methods, Figure S2). Linear regression analysis 
was performed on the dataset with the limma package in 
R, utilizing a model that included clinical status and all 
identified SVs as covariates [76]. Statistically significant 
differences between groups were required to show a false 
discovery rate (FDR) <0.05 following multiple-test cor-
rection by the Benjamini–Hochberg method [77]. Fur-
ther evaluation of potential biological significance was 
assessed by mean percent DNA methylation differences 
between FASD and controls.

Analysis of effects due to familial and diagnosis status
As the cohort included several sets of siblings and cous-
ins, a sensitivity analysis was performed to identify 
potential family effects in the dataset. However, little 
effect of familial origin was observed, indicating that the 
presence of families in the cohort did not significantly 
impact the study’s results or require statistical correc-
tion (Additional file 1: Supplemental methods). Further-
more, this cohort also included children with PAE that 
were not formally diagnosed with FASD (27 children). 
As such, additional differential DNA methylation analy-
ses were performed on the two individual subgroups of 
FASD cases compared to controls (Additional file 1: Sup-
plemental methods). However, as these did not reveal any 
significant differences between diagnosed FASD cases 
and PAE children, the PAE cases were included in the 
FASD group for all analyses.

Genotyping
Genomic DNA was extracted from saliva samples fol-
lowing standard procedures. Briefly, 161 DNA samples 
were genotyped for 2,443,177 markers using the Infinium 
HumanOmni2.5-Quad v1.0 BeadChip (Illumina Inc., San 
Diego, CA, USA) and 54 samples were genotyped for 
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2,379,855 markers using the Infinium HumanOmni2.5-8 
v1.0 BeadChip (Illumina Inc., San Diego, CA, USA) 
according to the manufacturer’s protocol. For both 
microarrays, 200 ng of DNA (4 μL at 50 ng/μL) was inde-
pendently amplified, labeled, and hybridized to Bead-
Chips and then scanned with default settings using the 
Illumina iScan. Analysis and intra-chip normalization 
of resulting image files were performed using Illumina’s 
GenomeStudio Genotyping Module software v.2011 with 
default parameters. Genotype calls were generated using 
the Illumina-provided genotype cluster definitions files 
(HumanOmni2.5-4v1_H.egt and HumanOmni2.5-8v1_C.
egt generated using HapMap project DNA samples) 
with a Gencall cutoff of 0.15. Only the 2,368,900 com-
mon SNPs were used for analysis. pyGenClean v1.2.2 and 
PLINK v1.07 were used for quality control and genetic 
data cleanup process, respectively. SNPs with comple-
tion rate <98  %, uninformative (MAF  =  0) and failed 
for Hardy–Weinberg equilibrium exact test (p-value 
<2.9  ×  10−8) were removed. Samples with completion 
rate <95 % were excluded.

Subsample definition
MDS was performed on the participants’ genotype data 
including 83 founder individuals from the Caucasian 
population (CEU), 186 from the Japanese and Han Chi-
nese population (JPT-CHB), and 88 from the Yoruba 
population (YRI) (HapMap; [78]).

All 195 samples that had both genotyping and DNA 
methylation data were hierarchically clustered based 
on the first four principal components from the MDS 
analysis. One individual of African descent was excluded 
because of their unique ethnicity compared to the 
rest. All other samples clustered in two groups: Clus-
ter 1 =  136 samples (49 FASD:87 controls) and Cluster 
2 =  58 samples (53 FASD:5 control) (Additional file  1: 
Figure S3). Cluster 1 was selected as the more balanced 
subsample, in terms of both ethnicity and cases versus 
controls, for further analysis (see Fig. 1 for a summary of 
the bioinformatic analyses).

Ethnic group adjustment
Differential DNA methylation analysis was performed as 
previously described on the more genetically homoge-
nous subsample defined as “Cluster 1” in the MDS analy-
sis above to identify difference between FASD cases and 
controls. SVA using this subsample identified 11 SVs that 
were added as covariates in linear modeling, as described 
for the full sample. Ethnically confounded probes were 
explored in more detail to ensure that the adjustment 
was performing as expected (Additional file  1: Supple-
mental methods, Figure S4). In addition, the inclusion 
of principal components from the MDS analysis into 

the regression model to correct for ethnicity was also 
explored. However, as ethnicity was confounded with the 
phenotype of interest, direct correction in the model also 
removed the signal of interest (Additional file 1: Supple-
mental methods).

DNA methylation pyrosequencing assay
Bisulfite pyrosequencing assays were designed with Pyro-
Mark Assay Design 2.0 (Qiagen; Additional file 5: Table 
S4). The regions of interest were amplified by PCR using 
the HotstarTaq DNA polymerase kit (Qiagen) as follows: 
15 min at 95 °C, 45 cycles of 95 °C for 30 s, 58 °C for 30 s, 
and 72 °C for 30 s, and a 5 min 72 °C final extension step. 
For pyrosequencing, single-stranded DNA was prepared 
from the PCR product with the Pyromark™ Vacuum 
Prep Workstation (Qiagen), and the sequencing was per-
formed using sequencing primers on a Pyromark™ Q96 
MD pyrosequencer (Qiagen). The quantitative levels of 
methylation for each CpG dinucleotide were calculated 
with Pyro Q-CpG software (Qiagen).

Brain concordance analysis
Human brain blood DNA methylation data from a previ-
ously published cohort were used to assess concordance, 
which was calculated as the Spearman correlation coef-
ficient of DNA methylation at all CpGs between healthy 
human blood and brain [48]. Human brain microarray 
data were obtained from the Allen Brain Atlas (http://
human.brain-map.org/static/download), which contains 
normalized expression values for 58,692 probes and 896 
brain regions from six individuals. Probes were ranked 
based on their average expression level for each brain 
region separately, and the mean was calculated across all 
brain regions. All 29,191 genes assayed (which included 
389 out of our 404 differentially methylated genes) were 
sorted based on their highest ranked probe.

CpG island distribution
The probes categorization into “North Shelf,” “North 
Shore,” “Core Island,” “South Shore,” “South Shelf,” or 
“Non-island” was based on the Illumina “RELATION_
TO_UCSC_CPG_ISLAND” annotation. The expected 
counts were calculated with the 404,030 probes remain-
ing after filtering. Statistics were calculated using mul-
tinomial goodness-of-fit Chi-square test. As a post hoc 
test to evaluate which category is driving the effect, addi-
tional Chi-square tests were run on each category versus 
the sum of all of the other categories.

Functional enrichment analysis
The list of imprinted genes was extracted from 
http://www.geneimprint.com/site/genes-by-species.
Homo+sapiens.imprinted-All (Additional file  6: Table 

http://human.brain-map.org/static/download
http://human.brain-map.org/static/download
http://www.geneimprint.com/site/genes-by-species.Homo%2bsapiens.imprinted-All
http://www.geneimprint.com/site/genes-by-species.Homo%2bsapiens.imprinted-All
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S5), which includes 80 genes with at least one probe 
among the 404,030 probes remaining after filtering (3035 
probes total). The Illumina “UCSC_REFGENE_NAME” 
annotation was used to map the probes to genes (479 
out of 658 DM probes had such annotation and could 
be mapped). In the event of probes mapping to several 
genes, the gene with the closest transcription start site 
(TSS) was selected using the Price annotation [42]. The 
ORA tool of ermineJ (version 3.0.2) was used to identify 
gene function enrichment in the list of up- and down-
methylated genes including the GO annotations molecu-
lar function, biological process, and cellular component 
[55]. The ermineJ ORA tool was set with the follow-
ing parameters: max gene set size = 1000; min gene set 
size =  2; background genes =  all genes mapping to the 
404,030 probes remaining after filtering.

Co‑expression analysis
The Gemma tools and database for meta-analysis of 
functional genomics data were used to perform a co-
expression analysis based on existing studies [57]. The 
methods used by Gemma have been previously described 
[79]. Datasets were obtained from public sources, pri-
marily the Gene Expression Omnibus [80]. For each 
dataset included in the meta-analysis, the Pearson cor-
relation matrix of gene co-expression profiles was com-
puted. Thresholds were applied for statistical significance 
of correlation, and the resulting sparse co-expression 
networks were aggregated across datasets. The degree to 
which a link is replicated across studies is a measure of 
its reliability; a threshold was set based on a benchmark 
permutation-based analysis, scaled to the number of 
datasets aggregated. Using the Gemma online tools, a co-
expression network was extracted for the 199 up-meth-
ylated genes in the master set of microarray experiments 
for human (282 usable experiments across multiple tis-
sues and experimental conditions) at the stringency rec-
ommended by the software, and visualized the results 
in Cytoscape [81]. The resulting network shows the co-
expression relationship of the genes in the input list only.

Differentially methylated region analysis
The identification of DMRs was performed using previ-
ously established guidelines and the DMRcate package 
in R [59, 82]. Briefly, results from linear modeling with 
SVs were analyzed using a Gaussian kernel smoother 
with a bandwidth of 1000  bp and scaling factor of 2 to 
model all CpG sites in the genome in parallel and identify 
broad regions of differential DNA methylation. p-values 
were corrected for multiple testing using the BH method, 
and an FDR cutoff of 0.05 was used to select significant 
probes between the FASD and control groups. DMRs 
were then assigned by clustering significant CpGs located 

within 1000  bp windows that contained two or more 
CpGs. This analysis was performed on both the full data-
set and the more ethnically homogeneous subset of indi-
viduals, and the final list of DMRs was obtained through 
the same process as previously described in the differ-
ential methylation analysis. Genomic locations for all 
DMRs were assigned using the Illumina hg19 annotation.
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